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This study examines the e�ect of slow crystal dummy rotation on three-dimensional oscillatory instability and
time-dependent supercritical �ow states in a Czochralski melt �ow experimental model. To enable further compar-
ison with numerical modelling, the experiments are carried out using a 20 cSt silicone oil as an experimental liquid
and in a large diameter crucible, which allows one to work in a narrow temperature interval, so that temperature
dependence of all the thermophysical properties of the experimental liquid can be neglected. The measurements
con�rm, partially qualitatively and partially quantitatively, earlier numerical predictions on destabilization ofthe
Czochralski convective �ow by a slow rotation. A simple power dependence of �ow oscillations frequency on the
Grashof and rotational Reynolds numbers that �ts all the experimental runs was found.
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1. Introduction

This article presents an experimental study ofthe
Czochralski type �ows driven by buoyancy and thermo-
capillarity, and a�ected by a slow crystal rotation. These
studies were started by Schwabe and his co-authors (see
[1�3] and references therein), involving at later stages
also our research group [4]. We continue to carry out
experiments of this kind [5, 6], focusing, in particular,
on producing of experimental data for validation of com-
putational codes. Here we describe our �rst results ex-
tended to a larger experimental facility and more precise
measurements. The experimental modelling of oscilla-
tory instability onset in the Czochralski melt �ow model,
and the frequency characteristics of supercritical oscilla-
tory �ow regimes are presented.
We focus mainly on large Prandtl number melts,

Pr > 1, where instabilities appear as spoke patterns, cold
plumes, and oscillating jets [1�9]. These instabilities are
well studied and are qualitatively described as results of
the Rayleigh�Bénard mechanism that can be localized
in di�erent �ow areas and, therefore, results in di�er-
ent patterns (see, e.g., [6�9] and references therein). In
this study we use viscous 20 cSt silicone oil as a work-
ing liquid, and perform experiments in a relatively large
experimental crucible, which allows us to work within a
relatively narrow temperature gap of 5 ◦C, so that ther-
mophysical properties of the �uid can be taken constant
for the computational modeling purposes. As a result, we
are able to con�rm experimentally the numerically pre-
dicted e�ect of destabilization of the Czochralski convec-
tive �ow by a slow rotation [9, 10], and to obtain certain
quantitative agreement in comparison of experimentally
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measured and numerically predicted frequencies of the
�ow oscillations.
The results presented below show rather novel and un-

expected tendencies that, to the best of our knowledge,
were never reported before, however yet to be veri�ed
against independent measurements and computations.
First, we observe that at low rotation rates the instability
sets in at approximately constant value of the Richard-
son number, which is the Grashof number divided by the
squared Reynolds number. This implies that instability
sets in when ratio of buoyancy to centrifugal forcing ex-
ceeds a certain value. Another novel observation is the
power dependence of main oscillation frequency on the
Grashof and Reynolds number that �nalizes in a simple
equation, which �ts observations of all the experimental
runs. It is stated again that the results are preliminary
and will be subject to a thorough veri�cation in our fu-
ture studies.

2. Experimental setup

The experimental setup is sketched in Fig. 1 and is the
same as described in [5], where the reader is addressed
for details. Here we only mention that to mimic the
Czochralski melt �ow we study motion of experimental
liquid in a transparent glass crucible whose sidewall and
bottom are kept isothermal. The temperature di�erence
is created by a cold and isothermal crystal dummy ro-
tated by a separate DC motor. Thus, as in the Czochral-
ski crystal growth system, the �ow is driven by buoyancy,
rotation and thermocapillarity. The crucible radius in
our experiment is rather large, 45 mm, which allows us
to work at relatively low temperature di�erences. Thus,
in the experiments described below the temperature dif-
ference did not exceed 5 ◦C. Owing to such a small dif-
ference we were able to neglect dependence of the oil
thermophysical properties on the temperature when per-
formed computational studies for our setup.
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Fig. 1. Sketch of the experimental setup: (1) liquid
container, (2) copper crystal dummy, (3) sealing ring,
(4) pulling rod, (5) double-glass envelope, (6) thermo-
couples, (7) beam splitters, (8) mirrors, (9) beam ex-
pander, (10) screen, (11) camera.

TABLE

Thermophysical properties of 20 cSt silicone oil.

Property Value

density [kg/m3] 955

kinematic viscosity [m2/s] 0.2× 10−4

heat di�usivity [m2/s] 0.97× 10−7

thermal expansion coe�cient [1/ ◦C] 1.07× 10−3

surface tension coe�cient [kg/(s2 ◦C)] −2.7× 10−5

Temperature �uctuations are measured simultaneously
by very �ne 0.1 mm diameter, T-type thermocouple
wires, and by a Mach�Zehnder interferometer. All ther-
mocouple signals and interferometer fringes are transmit-
ted to PC for post-processing. The 20 cSt silicon oil
was used as experimental liquid. Properties of the sil-
icon oil were taken from [11] and are listed in Table.
The governing parameters are derived as Pr = 206,
Gr = 2391∆T , Re = 101ω [rad/s], Ma = 658∆T , where
∆T is the temperature di�erence between the crucible
wall and the crystal dummy, and ω is the angular ve-
locity of the crystal dummy rotation. Since results here
are reported for the single experimental liquid, the ra-
tio Ma/Gr = 0.275 is always constant, so that below we

report mainly Grashof number values and dependences.
The series of experiments have been conducted for dif-

ferent crystal dummy rotation velocities varying between
0 and 5 rpm, with gradually changing temperature dif-
ferences between 0 and 5.0 ◦C. The temperature �uctua-
tions were measured at four di�erent locations, so that a
pair of thermocouples was installed near the axis and the
crucible bottom and another pair in the crucible bottom-
-wall corner (Fig. 1).
Examples of temperature �uctuations measured by the

thermocouples and the interferometer, as well as corre-
sponding cross-veri�cation of the results can be found
in [5]. The temperature oscillations appear with a cer-
tain frequency and its harmonics, whose values are ob-
tained via the Fourier transform of the temperature his-
tories measured by thermocouples, or by oscillations of
the amount of black pixels in a control area of an inter-
ferometry fringe. As shown in [5], both measurements
yield identical frequency values. For the non-rotating
dummy the strongest oscillations are observed in lower
part of the crucible close to the axis. When crystal ro-
tates we observe strong temperature oscillations also in
the crucible lower corner. We are interested to measure
a critical temperature di�erence at which oscillations ap-
pear, as well as dependence of the oscillation frequency
on the governing parameters.

3. Results

Results for a slow dummy rotation on the instability
onset are shown in Fig. 2. Measurements were carried
out for dummy rotations with ω = 1, 2, 3, 4, and 5 rpm
that corresponds to the Reynolds number varying be-
tween 10 and 53. The temperature oscillations frequency
is scaled by ν/R2, where R is the crucible radius and ν
is the oil kinematic viscosity. The temperature di�erence
was varied between 0 and 5 ◦C by the increment of 0.2 ◦C.
This corresponds to variation of the Grashof numbers be-
tween 0 and 12000, and the Marangoni number between 0
and 3300.
As follows from Fig. 2, a slow dummy rotation exhibits

a destabilization e�ect, i.e. stability threshold shifts to-
wards smaller temperature di�erences compared to the
stationary dummy case. The �rst conclusion from Fig. 2
is the striking decrease of the critical Grashof number at
relatively low rotation rates. At zero Reynolds number,
i.e., when the crystal dummy is stationary, the critical
Grashof numbers and oscillation frequencies are about
an order of magnitude larger than those observed for the
slow rotation (20 < Re < 50). This agrees with our ear-
lier numerical predictions [5, 10]. In agreement with these
computations, a slow rotation destabilizes the convective
�ow starting from a certain small value of the Reynolds
number. Thus, for ω = 1 rpm (Re = 10.5) the oscillation
appear for Gr > 7650, while at ω = 2 rpm (Re = 21) the
critical Grashof number is 480. The dashed line in Fig. 2
connects the points at which temperature oscillations ap-
pear, so that the �ow is unstable below the curve 1 and
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Fig. 2. Experimentally measured temperature oscilla-
tion frequencies as functions of the Grashof number at
di�erent dummy rotation rates. The straight lines rep-
resent the least square power �t of the points obtained
at the same rotation rate.

above the curve 2. The curve 1 corresponds to the men-
tioned above destabilization of convective �ow by a slow
rotation, while the curve 2 shows that at stronger rota-
tion the critical Grashof number (or critical temperature
di�erence) start to grow. The latter also qualitatively
agrees with the numerical predictions. Further compar-
isons with the numerical results are given below.
Another interesting conclusion that follows from Fig. 2

is power dependences of the oscillations frequency on the
Grashof number (temperature di�erence) observed at all
�ve rotation rates with the gradually increased ∆T . All
the dependences were obtained as a least squares power
�t assuming that the observed weak data scattering re-
sults from the experimental uncertainties. To the best
of our knowledge, such dependences were never reported
before. Furthermore, with the increase of the Grashof
number all the power dependences converge to almost the
same frequency value. The corresponding experimental
points are enclosed into a small ellipse shown in Fig. 2.
This possibly can be explained by a strong buoyancy ef-
fect that at large Grashof numbers makes the e�ect of
weak rotation almost negligible.
The power dependence of the oscillation frequency on

the Grashof number raises the question about existence
of a similar dependence on the Reynolds number. This
is really the case, as is illustrated in Fig. 3. As above, we
observe that within relatively slow rotation rates consid-
ered here, power of the Reynolds number tends to zero,
indicating that the �ow is governed mainly by the buoy-
ancy and, possibly, thermocapillary convection. By ex-
trapolating the trends in Fig. 3 we observed that all the
lines meet at almost same frequency value indicated by a
small ellipse. We assume that all the power dependences
observed belong to the same physical instability mecha-
nism that starts at Re ≈ 10 and persists at small rotation

Fig. 3. Experimentally measured temperature oscilla-
tion frequencies as functions of the Reynolds number
at di�erent Grashof numbers (temperature di�erences).
The straight lines represent the least square power �t of
the points obtained at the same rotation rate.

rates at rather large interval of the Grashof number (tem-
perature di�erence) values. At Re < 10 the instability is
driven only by the thermal convection with a negligible
e�ect of rotation.

Putting all the power dependences together we arrive
to the following generalized formula:

f(Re,Gr) = (0.0032Re−3 − 0.0024)

×Gr0.02Re+0.034. (1)

This orderly correlation summarizes the power frequency
dependences discussed above. Note that owing to the
experimental range of low dummy rotations covered in
this study, it describes only dummy rotation limited to
21 < Re < 53, and cannot be applied to the non-
-rotational case, while con�gurations with a faster ro-
tation should be carefully tested prior application.

Figure 4 shows a new and striking observation that
was never reported not only for the Czochralski model,
but also for other �ows driven by natural convection and
rotation. Plotting all the measured frequencies against
the Richardson number Ri = Gr/Re2, where zero fre-
quency values correspond to the steady state �ows, we
observe that for all the rotation rates considered the os-
cillatory instability sets in at Ri ≈ 1. This constant value
of the Richardson number implies an important conclu-
sion: the observed instability sets in at a constant ratio
of the buoyancy and centrifugal forces. At the same time
it raises questions for further experimental and numer-
ical studies. The �rst question is how this value of Ri
varies with the Prandtl and Marangoni numbers. The
second question is generality, i.e., in which Czochralski or
other con�gurations and at which conditions the instabil-
ity onset is de�ned by the critical value of the Richardson
number? Is there a baroclinic instability mechanism as
observed in rotating convective layers? All these and may
be other questions are beyond the scope of the present
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Fig. 4. Dependence of the measured oscillation fre-
quency on the Richardson number at di�erent Reynolds
numbers. Black dashed line separates parameters cor-
responding to stable and unstable �ows.

study and will be addressed in future.

Fig. 5. Critical perturbation frequencies as functions
of the Reynolds number. The curves show numerical re-
sults for di�erent Fourier modes. The black circles cor-
respond to the experimental results. The straight lines
correspond to the crystal dummy rotation frequency.

In the following Figs. 5 and 6 we compare present ex-
perimental measurements with the numerical results on
the oscillatory instability onset. Figure 5 shows the crit-
ical non-dimension perturbation frequency as a function
of the Reynolds number. The curves represent results
of numerical study for �rst three leading Fourier modes,
k = 0, 1, and 2, assuming that perturbations of a steady
axisymmetric base �ow are proportional to exp(ikθ) [10].
The experimental measurements are shown by black cir-
cles. The solid straight lines correspond to frequency
of crystal dummy rotation which increases linearly with
the Reynolds number. Positive and negative frequency
values correspond to the counter-clockwise or clockwise
direction of crystal rotation, as well as show the direction

Fig. 6. Comparison of experimental and numerical re-
sults for the dependence of the critical Grashof number
on the Reynolds number.

of propagation of three-dimensional azimuthal travelling
waves. We observe a good agreement of experimentally
measured frequencies with those predicted numerically
for the axisymmetric (k = 0) Fourier mode. Two exper-
imental points are close also to the frequencies of k = 2
Fourier mode. However, since all the results are described
by the same power dependence, we do not think that a
switch of the eigenmode takes place. It is seen also from
the next Fig. 5 that critical Grashof numbers of k = 0
mode are noticeably smaller than that of the k = 2 mode.
Figure 6 compares experimentally measured critical

Grashof number with the numerical results on the �ow
linear stability. It is seen that conversely to comparison
of the critical frequencies (Fig. 5), the agreement in criti-
cal Grashof numbers (critical temperature di�erences) is
mainly qualitative. Mainly, the critical Grashof number
steeply decreases when the rotational Reynolds number
is gradually increased up to Re ≈ 20, and slowly increases
beyond this value. This is in full agreement with similar
observations of [5, 10]. The explanation for the destabi-
lization by a slow rotation is given in a recent study [9].
Basing on the above frequency comparison one would ex-
pect experimental point to lay along the k = 0 numerical
curve, however only two points out of six are close to
this curve. This disagreement can be caused by di�er-
ent reasons, starting, e.g., from numerical accuracy. The
oscillations predicted numerically for Re > 20 have very
low frequency about 10−2 Hz (see Fig. 5), whose exper-
imental measurement is not always possible. Also, the
thermophysical parameters of the silicone oil, especially
the temperature dependence of the surface tension, may
be not very precise. It was shown in [4], for example,
that a slight variation of the surface tension temperature
coe�cient can double the critical temperature.
We also observed that frequency of crystal dummy ro-

tation appears in the frequency spectra. Usually, e.g.,
in [1], appearance of this frequency is attributed to the
experimental imperfections. For example, a slight mis-
alignment of the crystal dummy can lead to oscillations of
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the three-dimensional temperature �eld when the dummy
rotates. In the present experiment, however we observe
that in the interval 30 < Re < 60 the frequency of the
k = 2 Fourier mode is very close to the crystal rota-
tion frequency (Fig. 4). It is seen also that at smaller
Reynolds numbers, 10 < Re < 20, the frequencies of
other Fourier modes are also very close to the frequency of
crystal rotation. One can argue that small imperfections
that always exist in the experimental setup can trigger
the modes having frequency close to the dummy rotation
one, so that the frequency of resulting non-linear �ow
becomes locked at the dummy rotation frequency value.

4. Concluding remarks

We have conducted a series of experiments in a
Czochralski �ow model setup using viscous 20 cSt sili-
cone oil as a working liquid. Our purpose was to measure
the steady-oscillatory transition in the �ow governed by
buoyancy, thermocapillarity and rotation, and to study
the dependence of oscillations frequency on the governing
parameters in non-linear supercritical �ow regimes.
The experimental results allowed us to obtain two

branches of the neutral stability curve, qualitatively sup-
porting the numerically predicted destabilization of the
convective �ow by weak rotation (the �rst branch) and
a slow growth of the critical temperature di�erence with
further increase of the rotation rate (the second branch).
Noticeably, the second branch is characterized by almost
constant oscillations frequency.
A novel and quite unexpected observation shows that

at all rotation rates considered the �ow oscillations
started at the same value of the Richardson number,
Ri ≈ 1, implying that oscillatory instability is controlled
by a certain balance between buoyancy and forced con-
vection due to the dummy rotation. It is yet to be
studied whether this e�ect retains at other Prandtl and
Marangoni numbers, and how the Richardson number
depends on these parameters.
Comparing the experimental and numerical results we

�nd that the frequency of oscillations of supercritical
�ows compares much better than critical values of the
temperature di�erence or the Grashof number. We argue
that this discrepancy can be a result of numerical inaccu-
racies or not precisely known thermophysical properties.
It should be noticed that numerically found instability
limits correspond to a zero oscillations amplitude, while
any experiment is capable to measure oscillations only
starting from a certain �nite amplitude.

At gradually increased supercriticalities, increasing ei-
ther the Reynolds or the Grashof number, we found that
frequency of temperature oscillations varies as a power
of Re or Gr. Putting all the dependences together we ar-
rived to Eq. (1). Again, it is yet to be explored whether
these dependences exist in other Czochralski con�gura-
tions, and at other, especially smaller, Prandtl numbers,
as well as at larger Marangoni numbers. To verify these
power dependences numerically one would need to per-
form a series of highly accurate fully three-dimensional
non-linear time-dependent computations, which is a chal-
lenging computational task.
A very interesting and perhaps important observa-

tion at larger supercriticalities, corresponding to strongly
non-linear regimes, is that all the power dependences of
the oscillations frequencies on the Grashof number (the
temperature di�erence) collided together, so that the re-
sult became independent of the Reynolds number, indi-
cating that the resulting regime is governed mainly by
the thermal convection.
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