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Abstract

A version of the global Galerkin method applied to a wide range of hydrodynamic stability

problems is described. The numerical algorithm is based on a non-orthogonal set of globally

defined basis functions, which satisfy all linear boundary conditions and the continuity equation.

This leads to a significant reduction of the number of scalar degrees of freedom of the numerical

model. The relatively low number of degrees of freedom makes it possible to solve the eigenvalue

problem associated with the linear stability of flow, and to approximate asymptotically the slightly

supercritical flows that arise after the onset of instability. The main objective is the analysis of

stability of steady state flows which are calculated numerically. Details and advantages of the

proposed approach are illustrated on several examples.
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1.   INTRODUCTION

Consider a steady state flow obtained as a numerical solution of a time-dependent fluid

dynamics problem, which includes equations of momentum and continuity, together with transport

of heat and mass, chemical reactions, electrodynamics, etc. The flow is defined by several

governing parameters (Reynolds number, Prandtl number, Schmidt number, etc.). Obviously, for

some parameter values this solution can be unstable or non-unique. There are two main ways to

study the stability of a numerically calculated steady state flow. The first and most common is the

straight-forward integration in time with a small perturbation added to the steady solution. The

second and more rigorous is the investigation of the stability properties by studying the spectrum of

the corresponding linearized problem. The first approach is usually so CPU-time consuming that it

becomes impossible to study the stability in a wide parameter range. Furthermore, the characteristic

time of the dominant perturbation of the problem (amplification increment, frequency of

oscillations) is not known a priori, which causes additional problems related to the correct choice of

the time step.  The second approach leads to an eigenvalue problem whose size is equal to the

number of degrees of freedom of the numerical method. Usually, this size (equal to the number of

discretization elements multiplied by the number of unknown functions) is very large. For example,

a two-dimensional CFD problem, being solved on a 100×100 grid, results in 30,000 degrees of

freedom. Solution of such problems became possible only recently. It requires the implementation

of Krylov subspace iteration methods [1] and still leads to heavily CPU-time consuming

calculations.

An alternative approach was proposed in [2],[3] and is described here in some more detail.

The idea is to apply a global spectral approach and in this way to avoid the discretization of the

flow region. If the basis functions are chosen appropriately then the spectral convergence of the

corresponding Galerkin series will be reached and finally a lesser number of degrees of freedom

will be needed for the approximation of the solution. The global spectral methods, applied to the

Navier-Stokes and transport equations usually require a too large computer memory and for this

reason remained impractical for many years. Recently, however, the available computer memory

became rather large (e.g., more than 1 Gbyte memory is available for a personal workstation) and is

growing rapidly. Therefore, it becomes possible to apply the global spectral methods to complicated

fluid dynamic problems.

Clearly, the efficiency of a spectral method is determined by the choice of the basis

functions. It is very desirable to include the boundary conditions and possibly other properties of the
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solution into a spectral series before the computational process starts (e.g., the incompressible

continuity equation can be solved by the use of a divergent-free basis).  This can be done in the case

when the flow region is an arbitrary canonical domain, i.e., a domain whose borders are coordinate

surfaces, for an arbitrary set of linear boundary conditions. A possible way to define such basis and

several examples of scalar and vector sets of the basis functions are given in Section 2. Some details

of the numerical implementation, which includes the calculation of steady flows, study of their

stability and asymptotic approximation of supercritical flows are described in Section 3. Section 4

contains some examples of successful use of the described approach.

This paper was presented as a keynote lecture at the 8th International Symposium of

Computational Fluid Dynamics. Different variations of the described numerical approach and main

results are published in [2]-[10]. The main objective of the present paper is to give a complete and

systematic description of the numerical approach, which can be used for a wide variety of problems.

2.   BASIS FUNCTIONS

2.1     Basis Functions Satisfying Boundary Conditions.

Consider an arbitrary one-dimensional problem, defined in the interval x∈[x1,x2]. Assume

also that N boundary conditions of the problem are linear and homogeneous. These boundary

conditions can be represented as

( )( ) 0
1 21

=α∑
= =

L

l x,xx
l

ml xu ,   m = 1,2,3, …, N (1)

where u(x) is the unknown function, αml are arbitrary coefficients, the superscript (l) denotes

derivatives, and x has the value of x1 or x2 (a negative value of l can be interpreted as the integral

from x1 to x2). Suppose also that the solution u belongs to a Banach space W, and a system of

functions ( ){ } Wx nn ∈ψ ∞
=0  forms a basis in W. We assume that this basis can be efficiently used to

approximate the unknown solution by a truncated series

 ( ) ( )∑
=

ψ≈
M

m
mm xaxu

0
(2)
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In the general case the functions ψk(x) do not satisfy the boundary conditions (1) and special care

should be taken to satisfy them (e.g. weak formulation, tau-spectral approach). Usually this slows

down the convergence. On the other hand, all functions satisfying (1) form a subspace U ⊆ W .

Obviously, u(x)∈U and one can expect that the use of a basis in U, instead of a basis in W, will

provide a faster convergence.  To construct the basis in U from the more general basis

( ){ } Wx nn ∈ψ ∞
=0 , we consider linear superpositions of the functions ψn(x)

( ) ( )∑
=

+ψ≈ϕ
N

i
innin xbx

0
, (3)

i.e., for N boundary conditions (1) we define the superpositions of N+1 basis functions ψn(x). Each

n-th superposition contains the functions ψn+i(x) with the index varying from n to n+N. Substitution

of (3) in (1) yields (m = 1,2,3, …, N):

( )( ) ( ) ( ) ( ) ( )∑ ∑∑ ∑∑
= =+

== = =+
= =

ψα=ψα=ϕα=
N

i x,xx

l
in

L

l
mlni

L

l

N

i x,xx

l
inniml

L

l x,xx
l

nml xbxbx
0 11 01 212121

0 (4)

Relation (4) defines N linear homogeneous algebraic equations for the N+1 coefficients bni

(i = 0,1,2, …, N) for each fixed index n:

0
0

=∑
=

N

i
nimibA , ( ) ( )

211 x,xx

l
in

L

l
mlmi xA

=+
=

ψα= ∑ , m = 1,2,3, …, N (5)

To make this system definite one can assign the value bn0 = 1 and obtain the other bni (i = 1,2, …,

N) from (5). This will provide a unique solution for all coefficients bni if the boundary conditions

(1) are independent. The functions ϕn(x) defined in this way satisfy the boundary conditions (1). It

is easy to prove that the system { } WUnn ⊆∈ϕ ∞
=0  forms a basis in the subspace U. The coefficients

bni should be obtained analytically, as functions of the indices n and i, before the computational

process starts (examples for some particular boundary conditions are given below). This can be

easily done with the help of computer algebra. The unknown solution u(x) can be now

approximated as

( ) ( )∑
=

ϕ≈
K

k
kk xaxu

0
(6)
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The truncated series (6) satisfies the boundary conditions (1) analytically for any truncation number

K. The functions ϕn(x) can be used as trial functions for a general weighted residuals method. In

case of the classical Galerkin method the weight functions coincide with ϕn(x). In the most general

case ψn(x) should be used as the weight functions. However, if the residual satisfies some linear

homogeneous boundary conditions, a similar procedure can be used to make the projection on the

corresponding subspace and to choose the weight functions which satisfy the boundary conditions.

Note, that the described procedure does not preserve orthogonality of the initial basis

functions ψn(x), in the case when these were orthogonal. The functions ϕn(x) can be orthogonalized,

if necessary, using the Gram-Schmidt orthogonalization procedure. However for non-linear

problems, when the evaluation of non-linear terms requires the largest computational effort, the

orthogonality of basis functions is not very helpful.

We assume that the series (6) will converge faster (at least not slower) in the subspace U

than the series (2) converges in the larger functional space W. However, this statement cannot be

proved for a general case. The convergence must be carefully checked for each particular problem,

as it was done in [2],[3],[8].

The process of constructing the basis is defined here only for the homogeneous boundary

conditions (1). Furthermore, only in case of homogeneity the series (6) will satisfy the same

boundary conditions. Therefore, we suppose that all inhomogeneities were removed by an

appropriate change of variables, and the numerical process starts only after the boundary conditions

were made homogeneous. Examples of such changes of the variables can be found in [2],[3],[9].

In the case of a multi-dimensional problem, defined in any orthogonal coordinates, the same

procedure can be applied along each coordinate direction (see examples below). The only restriction

is the shape of the domain, which has to be canonical, i.e., the boundaries of the domain must

coincide with the coordinate surfaces. This restriction is rather strong and probably cannot be

removed without some extension of the described approach beyond the classical Galerkin

formulation (e.g., subdomain collocation, domain decomposition techniques, spectral element

approach).
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2.2  Examples of Basis Functions Based on Chebyshev Polynomials

To construct basis functions for different boundary value problems we shall use the shifted

Chebyshev polynomials of the first and second kind defined in the interval x∈[0,1]

( )[ ]12 −= xarccosncos)x(Tn ,   ( ) ( )[ ]
( )[ ]12

121
−

−+=
xarccossin

xarccosnsin)x(Un   (7)

The two systems { }nT  and { }nU  form bases in L2[0,1]. To define bases for different boundary

conditions we need values of the polynomials and their derivatives at the ends of the interval:

( ) ( )nnT 10 −= , ( ) 11 =nT , (8)

( ) ( ) ( )110 +−= nU n
n , ( ) 11 += nUn (9)

( ) ( ) 2210 nT n
n −=′ , ( ) 221 nTn =′ , (10)

( ) ( ) ( )( ) 32110 ++−=′ nnnU n
n , ( ) ( )( ) 3211 ++=′ nnnUn (11)

and a relation connecting both systems of polynomials:

( ) ( ) ( )xUnxT nn 112 −+=′ (12)

2.2.1 Two-point boundary value problem

Consider a two-point boundary value problem with the boundary conditions defined as

( ) ( ) 000 00 =β+′α uu , ( ) ( ) 011 11 =β+′α uu (13)

where 0α , 0β , 1α , and 1β  are known coefficients. We approximate the unknown function u(x) as a

series

( ) ( )∑
=

ϕ≈
N

i
ii xaxu

0
, ( ) ( ) ( ) ( )xTfxTfxTx iiiiii 2

2
1

1
++ ++=ϕ (14)

To define the coefficients 1
if and 2

if , we substitute (14) into the boundary conditions (13). This

yields two linear algebraic equations for 1
if and 2

if :

( )[ ] ( )[ ]

( )[ ] ( )[ ] 1
2

11
2

11
2

1

0
2

00
2

00
2

0

21

21

β−α−=β++α+β++α

β−α−=β++α+β−+α−

iifif

iifif

i
2

i
1

i
2

i
1

(15)
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These equations can be solved analytically, yielding:

( ) ( )[ ] ( ) ( )[ ]
( )[ ] ( )[ ] ( )[ ] ( )[ ]0

2
01

2
11

2
10

2
0

1
2

10
2

00
2

01
2

1

2121

22

β++αβ++α+β++αβ++α

β++αβ+α−β++αβ+α
−=

iiii

iiii
f i
1 (16)

( ) ( )[ ] ( ) ( )[ ]
( )[ ] ( )[ ] ( )[ ] ( )[ ]0

2
01

2
11

2
10

2
0

0
2

01
2

11
2

10
2

0

2121

11

β++αβ++α+β++αβ++α

β++αβ+α+β++αβ+α
−=

iiii

iiii
f i
2 (17)

Similar linear combinations of the Chebyshev polynomials were used in [11] for the solution of the

one-dimensional Orr-Sommerfeld equation.

2.2.2 Basis functions for Poisson equation in cube

Consider the Poisson equation

( )z,y,xq
z

u

y

u

x

u
=

∂

∂
+

∂

∂
+

∂

∂
2

2

2

2

2

2
(18)

in the cube 0 ≤ x,y,z ≤ 1 . To describe different possibilities let us define boundary conditions of the

first, second and third type in the x-, y- and z- directions respectively:

,uu xx 010 == ==  0
10

=
∂
∂=

∂
∂

== yy y
u

y
u , (19,20)

0
0

=






∂
∂γ+

=zz
uu , 0

1
=







∂
∂λ+

=zz
uu (21,22)

To construct the basis for u(x,y,z) one should consider two-point boundary value problems in each

direction separately and use eqs.(14,16,17) to construct basis functions in each direction. Then the

one-dimensional basis functions should be combined into the three-dimensional ones. This yields:

( ) ( ) ( ) ( )∑∑∑
===

ψφϕ≈
K

k
kjiijk

M

j

N

i
zyxaz,y,xu

000
(23)

where

( ) ( ) ( )xTxTx iii 2+−=ϕ (26)

( ) ( )
( )

( )yT
j

jyTy jjj 22

2

2
+

+
−=φ (27)



8

( ) ( ) ( ) ( )[ ] ( ) ( )[ ]
( )[ ] ( )[ ] ( )[ ] ( )[ ]

( )

( ) ( )[ ] ( ) ( )[ ]
( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )zT

iiii

iiii

zT
iiii

iiii
zTz

l

lll

2
2222

2222

1
2222

2222

2121

11

2121

22

+

+

γ++λ+++λ++γ++

γ++λ++λ++γ+
−

−
γ++λ+++λ++γ++

λ++γ+−γ++λ+
−=ψ

(28)

The solution of the problem (18)-(22) can be carried out by the classical Galerkin method if the

functions (26)-(28) will be used as both trial and weight systems. Otherwise, for a general weighted

residuals method, the weight system can be defined in a similar way.

2.2.3 Basis functions for a two-dimensional divergence-free vector field in Cartesian coordinates

The usual unknown functions in incompressible fluid dynamics are divergence-free vector

fields. For an efficient application of a spectral method, we need a system of divergent-free basis

functions that satisfy the boundary conditions. To derive such a system we first define a basis in a

general space of divergence-free vector fields, and then apply the described procedure to satisfy the

boundary conditions.

Recalling that both systems of Chebyshev polynomials { }nT  and { }nU  form bases in the

space of scalar functions, and using the property (12), we define:

( )

( )

( ) ( )

( ) ( )















−
=









=
−

−

yTxU
j

yUxT
i

w
w

ji

ji

y

x

ij

1

1

2
1

2
1

w , i, j = 1,2,3, … , (29)

( )












= −

0
2
1

1
0

yU j
jw , j = 1,2,3,…; ( )











−=
− xU i

i
1

0

2
1

0
w , i = 1,2,3,… (30)

It can be shown that, according to (12), the two-dimensional divergence of all functions wij

vanishes:

( ) ( )
( ) ( ) ( )

( )

( ) ( ) ( ) ( ) 0

2
1

2
1

1111

11

=−=

=−=
∂

∂
+

∂
∂

=⋅∇

−−−−

−−

yUxUxUyU

dy

ydT
xU

jdx
xdT

yU
iy

w
x

w

jiij

j
i

i
j

yx

ijw
(31)
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Since both systems { }nT  and { }nU  form scalar bases, each component of wij is represented as a

linear superposition of the scalar basis functions. Therefore, the vector functions (29),(30) form a

basis in the space of divergent-free vector fields.

In the case of a problem in a two-dimensional rectangle 0 ≤ x ≤ A, 0 ≤ y ≤ 1 we have to

satisfy 8 boundary conditions, i.e., one boundary condition for each component of the velocity field

on each boundary, or 4 boundary conditions in each direction. According to the described

procedure, we define a product of two linear superpositions of functions in the x- and y- directions,

consisting of 5 (i.e., 4+1) scalar basis functions each:

( ) ( )

( ) ( )


























+






−









+
=

∑ ∑

∑ ∑

= =
+−+

= =
−++

4

0

4

0
1

4

0

4

0
1

2

2

m l
lj

jl
miim

m l
ljjlmi

im

ij

yT
lj

b

A
x

Ua

yUb
A
x

T
mi

aA

)y,x(u  (32)

Similarly to (31) one can show that 0=⋅∇ iju . The coefficients aim and bjl should be chosen to

satisfy the boundary conditions. For example, the boundary conditions defined for the velocity field

v in [6] are

0vvv === === 00 yAxx ,
( ) ( ) 0

1
1

==
∂

∂
=

=
y

y

y

x
v

y
v (33)

Substitution of (32) into (33) and the analytical solution of the corresponding system of linear

algebraic equations lead to the following coefficients aim and bjl:

( )( )
( )( )

( )( )
( ) 0

3
41

32
41

2

3
4

3
8

0

4

2

2

040231

>
+

++
=

++
++

−
+

−=

=−===

i,
ii

ii
a,

iii
ii

i
i

a

a,a,aa

ii

ii

(34)
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0
21228

1227228
7
4

0
75

34
2

7
6

0
21228

2440268
2

7
16

0
75

12
2

7
2

234

234

404

23

2

303

234

234

202

23

2

101

>
+++

++++
==

>
++

++
−=−=

>
+++

++++
−=−=

>
++

++
==

i,
iiii

iiii
b;b

i,
iii

ii
b;b

i,
iiii

iiii
b;b

i,
iii

ii
b;b

i

i

i

i

(35)

2.2.4 Basis functions for a three-dimensional divergence-free vector field in Cartesian coordinates

To approximate a three-dimensional divergent-free velocity field v it is necessary to define

two independent systems of basis functions similar to (32). It follows from

( ) ( ) ( )
0=

∂
∂+

∂
∂+

∂
∂=⋅∇

z
v

y
v

x
v zyx

v (36)

that v can be represented as

( )

( )

( )

( )

( )

( ) ( )

( )

( )

( )

( )






















∂
∂

−

+























∂
∂

−

=




































∂
∂

+
∂

∂
−

=























=

∫∫∫ dz
y

v

v

dz
x

v

v

dz
y

v
x

v

v

v

v

v

v

y

y

x

x

yx

y

x

z

y

x 0

0v (37)

The two terms on the right hand side of (37) can be interpreted as the projections of the field v on

the xy- (y=const) and xz- (x=const) planes respectively. Therefore, to represent the three-

dimensional divergent-free vector field as a Galerkin series, it is necessary to define two

independent sets of basis functions which will allow to approximate the projections of the velocity

on these planes. The velocity v is approximated as

[ ]∑ ∑ ∑
= = =

+≈
x y zN

i

N

j

)y(
ijk

)y(
ijk

)x(
ijk

)x(
ijk

N

k
)z,y,x(c)z,y,x(c

0 0 0
wwv (38)

where )x(
ijkc  and )y(

ijkc  are unknown (possibly, time-dependent) coefficients, and )x(
ijkw  and )y(

ijkw

are the basis functions in the planes x=const and y=const respectively. For a three-dimensional

rectangular region 0 ≤ x ≤ Ax, 0 ≤ y ≤ Ay, 0 ≤ z ≤ 1 these functions can be defined as



11

( )



































γ+
−

β+
=

∑ ∑ ∑

∑ ∑ ∑

=α =β =γ
γ+

γ
−β+βα+α

=α =β =γ
−γ+γβ+

β
α+α

4

0

4

0

4

0
1

4

0

4

0

4

0
1

2

1

2

0

)z(T
)k(

h
~

)
A

y
(Ug~)

A

x
(Tf

~

)z(Uh
~

)
A

y
(T

j

g~
)

A

x
(Tf

~A
)z,y,x(

k
k

y

jj

x

ii

kk

y

j
j

x

ii
y)x(

ijkw (39)

































γ+
−

α+

=

∑ ∑ ∑

∑ ∑ ∑

=α =β =γ
γ+

γ
β+β−α+α

=α =β =γ
−γ+γβ+βα+

α

4

0

4

0

4

0
1

4

0

4

0

4

0
1

2

1

0

2

)z(T
)k(

ĥ
)

A

y
(Tĝ)

A

x
(Uf̂

)z(Uĥ)
A

y
(Tĝ)

A

x
(T

)i(

f̂A

)z,y,x(

k
k

y

jj

x

ii

kk

y

jj

x

i
ix

)y(
ijkw (40)

Similarly to the two-dimensional case, we need the superposition of five polynomials in each spatial

direction. The substitution of (39,40) in the boundary conditions defines a set of linear equations for

the coefficients αif
~

, αif̂ , βjg~ , βjĝ , γkh
~

, γkĥ  .

2.2.5 Basis functions for a three-dimensional divergence-free vector field in cylindrical coordinates

Obviously, in the case of a curvilinear system of coordinates the divergent-free basis functions

must be defined in a different way. In the following we describe the basis functions for the

cylindrical coordinates, which were successfully used in [3], [4], and [9].

Consider a problem defined in a cylinder, 0 ≤ r ≤ 1,  0 ≤ z ≤ A, 0 ≤ ϕ ≤ 2π . Using the 2π-

periodicity in the ϕ-direction, the solution can be expressed as a classical trigonometric Fourier

series

( ) ( )ϕ= ∑
∞=

−∞=
ikexpz,r

k

k
kvv (41)

It follows from the divergence-free requirement

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

1
=

∂
∂

+++
∂

∂
=

∂
∂

+
∂ϕ

∂
++

∂
∂

=⋅∇ ϕ
ϕ

z
v

v
r
ik

r
v

r
v

z
vv

rr
v

r
v zrrzrr

v (42)
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that one has to distinguish between the mode k = 0 (i.e., axisymmetric case, no requirements on

( )ϕv ) and the modes k ≠ 0. In other words, the axisymmetric part of the flow (k = 0) must be treated

separately from the purely non-axisymmetric part (k ≠ 0). Thus the field v should be represented as

( ) ( ) ( )[ ] ( )∑
∞=

−∞=

ϕ
















= =

+
= =

= ∑ ∑+∑ ∑
k

k

ikexp
rN

i

zN

j

z,rij
k
ijCz,rij

k
ijB

rM

i

zM

j
z,rijijA

1 11 1
WVUv      (43)

where the vector functions Uij form the basis of the axisymmetric part (k=0) of the 3D flow in the

(r,z) plane, the vector functions Vij and Wij form bases for the remaining part of the three-

dimensional flow in the (r-ϕ) and (z-ϕ) coordinate surfaces respectively, and Aij , Bij
k   and Cij

k are

unknown coefficients. Similarly to the bases in the Cartesian coordinates, the components of basis

functions, that are normal to the corresponding coordinate surfaces vanish: ( ) ( ) ( ) 0===ϕ r
ij

z
ijij WVU .

The scalar components of the basis functions Uij, Vij and Wij are defined on the basis of the

Chebyshev polynomials as:

( )

( )


























∑
= 













+

+
∑
=

−+−

∑
= 













−+∑

=
+

=

4

0

4

0
1

2

0

4

0
1

4

02

m A

z
mjT

)mj(

jmb

l
rliU~ila

A

m A

z
mjUjmb

l
rliTilar

ijU

(44)

( )

( )































∑
= 













+∑

=
+

∑
= 













+∑

=
+

α−

=

0

4

0

4

0

4

0

4

0

m A

z
mjTjmd

l
rliÛilc

m A

z
mjTjmd

l
rliTilcikr

ijV (45)
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( )

( )
( ) 






























∑
= 













+

+
∑
=

+−

∑
= 













−+∑

=
+=

4

0

4

02

4

0
1

4

0
2

0

m A

z
mjT

mj

jmf

l
rliTiler

ikA

m A

z
mjUjmf

l
rliTilerijW (46)

Here α=0 for |k|=1 and α=1 for |k|>1, and

( ) ( ) ( ) ( )rnrUnrnTrnU~ 11 +++= , ( ) ( ) ( ) ( )rnUnrrnTrrnÛ 1
121 −

+α+α+α= (47)

The coefficients ail, bjm, cil, djm, eil, fjml are used to satisfy all the boundary conditions. As previously,

eq.(42) follows from the relation (12).

2.2.6 Application to the Navier-Stokes and transport equations

Consider an incompressible flow defined by the equations of momentum and continuity, as well as

by the transport of a scalar property θ (e.g., θ is the temperature):

( ) fvvvv +∆+−∇=∇⋅+
∂
∂

Re
p

t
1 (48.1)

 0=⋅∇ v  (48.2)

( ) q
Pet

+θ∆=θ∇⋅+
∂
∂θ 1

v (48.3)

where v is the fluid velocity, p is pressure, f is volume force, q is a volume source of θ, and Re and

Pe are the Reynolds and Peclet number.

The use of the global spectral approach gives some additional advantages. When there is no flow

through the boundaries of the flow region ( 0=⋅ Γnv ) the pressure gradient is orthogonal to the

divergence-free velocity field (Ω is the flow region and Γ is its boundary):

( ) ( ) 0=Γ⋅=Ω⋅∇=Ω⋅∇−Ω⋅∇=Ω∇⋅=∇ ∫∫∫∫∫
ΓΩΩΩΩ

ddpdpdpdpp, nvvvvvv (49)
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Obviously, (49) holds if v is replaced by a divergent-free basis function satisfying the no-through

flow boundary conditions, i.e., a basis function from (39), (40) or (44)-(46). Therefore, the

implementation of a weighted residuals method with a proper projection system excludes the

pressure from the numerical model.

We further assume that the velocity is approximated by a series

( ) ( )∑
=

=
N

i
ii tX

0
rv ϕ (50)

Here r is the radius-vector of a point in the flow region, Xi(t) are unknown time-dependent

coefficients and ϕi are the basis functions. It is supposed that the multiple indices of decompositions

like (38) and (43) are reordered into a single index i (for details see [2],[3]). Suppose also that the

classical Galerkin method is applied ,i.e., { }iϕ  serves as both the trial and the weight system. Then

the Galerkin procedure reduces (48) to an ODE system, which can be written as

( ) ( )( ) ikjijkjiji
i

ijiij Q~XXN~XL~,tF~
t

tX
S~XS~ ++=µ== X

d
d& (51)

The matrices ~ , ~ ,
~

L N Qij ijk i  contain coefficients of linear, bilinear and free terms of (48), respectively.

It is assumed that these matrices depend on a control parameter µ (µ = Re in case of eq.(48.1)). The

ODE system (51) corresponds to the case of a parabolic polynomial non-linearity of the considered

problem. In the case of polynomial non-linearity of higher degree there will be additional terms

described by matrices of higher dimension. In the case of non-polynomial non-linearity the

additional terms will contain more complicated functions of Xi. However, this will cause only

technical changes in the implementation of the method described below.

The use of the divergent-free basis functions, which satisfy the boundary conditions lead to

several definite properties of the matrices in (51). Thus, the conservation laws

( ) 0=∇⋅ vvv , and ( ) 0=θθ∇⋅ ,v (52)

lead to the relation

0=kjiijk XXXN~ (53)

for any vector X. The well-known Green’s theorems

vvvv ×∇×∇−=∆ ,, and θ∇θ∇−=θθ∆ ,, (54)
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lead to the symmetry of the matrices corresponding to the projections of the Laplacian operators.

Furthermore, these matrices are negatively defined like the Laplacian operators. The described

properties, especially (53), can be used as preliminary tests in the programming of the method.

The Gram matrix I,S~ jiij ≠= ϕϕ  (I is the identity matrix) arises because the basis functions

are not orthonormal. Multiplication of the left and the right hand sides of (51) by the inverse matrix

1−
ijS~  reduces the dynamical system to the following explicit form:

( ) ( )( ) ikjijkjiji
i

i QXXNXL,tF
t

tX
X ++=µ== X

d
d& (55)

The calculation of the inverse matrix 1−
ijS~  usually does not cause any numerical difficulties. The

explicit form of the ODE system (55) allows one to use standard numerical methods, developed for

ODEs and systems of non-linear algebraic equations, to obtain stationary and non-stationary

solutions and for the investigation of the stability of these solutions. For example, a steady solution

of (55) can be calculated by Newton iteration. In the case of multiple solutions the arc-length

continuation technique can be implemented to follow a certain solution path.

Assume that X = X0 is a steady solution of (55). The linear stability of solution X0 is defined by

the eigenvalues of the Jacobian matrix

( ) 0
nmnkmknmk

k

m
mk XNNL

X
X

J ++=
∂
∂

=
&

(56)

The steady solution X = X0 is unstable if there exists at least one eigenvalue of Jmk with a

positive real part. The study of stability requires to determine a value of the governing parameter µ

such that the real part of the dominant eigenvalue (eigenvalue with the maximal real part)

Λ = Λr + iΛi is zero: Λr = 0 and ∂Λr/ ∂µ ≠ 0. If Λi = 0 then a bifurcation from one steady solution

to another can be expected. If Λi ≠ 0 then a bifurcation to a periodic solution (Hopf bifurcation)

takes place. In the latter case ωcr = Λi  estimates the circular frequency of the oscillatory solution

which branches from the steady state after the onset of the oscillatory instability. The most unstable

perturbation of the dynamical system (55) is defined by the eigenvector V corresponding to the

dominant eigenvalue Λ with Λr = 0 (JmkVk = ΛVm = iΛiVm). Components of the eigenvector V,

redefined as the coefficients Xi from (50), define the expansion of the most unstable perturbation of

the flow in the Galerkin series (50). Similarly, the limit cycle of the dynamical system (55), which
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develops as a result of Hopf bifurcation, defines an approximation of the periodic solution of the

considered problem.

The computational process should be arranged in the following way: first, for an initial value of

the control parameter µ0 a stationary solution of ODE system (55) is calculated; then the

eigenvalues of the Jacobian matrix (56) are computed (in [2]-[10] the QR decomposition algorithm

was used). These two steps are repeated for the next value of the control parameter µ1 > µ0. Then

the real part of the dominant eigenvalue Λr is considered as a function of µ, and the critical value is

calculated as a solution of the equation Λr(µcr) = 0 (in [2]-[10]  it was solved by the secant method).

If at µ= µcr  a Hopf bifurcation takes place then the branching oscillatory state may be

asymptotically approximated as [12]

( )42
1= ε+εµ+µµ Ocr (57.1)

( )[ ]42
112 ε+ετ+

ω
π=µτ O)(
cr

 (57.2)

( ) ( )20 2 ε+













τ
πε+µ=µ OtiexpReal);t( cr VXX (57.3)

Here ε is a formal positive parameter,  (µ−µcr) is the supercriticality, ωcr is the critical circular

frequency, τ is the period of oscillations, and X is the asymptotic oscillatory solution of the ODE

system (55) for the control parameter defined in (57a). The asymptotic expansion (57) is defined by

two parameters µ1 and τ1, which are calculated using the algorithm of [12]. This algorithm, as well

as its implementation for the described dynamical system, is briefly described below. The

parameters µ1 and τ1 are defined by

( )
r1

α
σ−=µ Real

, ( )[ ]i

cr

Im
1

αµ+σ
ω

−=τ 11 (58)

where α is the derivative of the dominant eigenvalue with respect to the control parameter

cr
d
dir

µ=µµ
Λ

=α+α=α (59)

and the complex number σ can be obtained via the following algorithm  (here F is the right hand

side of the dynamical system, X0 is steady solution in the critical point, U and V are the left and

right eigenvectors of the Jacobian matrix J, and ς is a complex number):
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



 −−

ω
+=σ 2

02
2

111120
0

21 g
3
1

g2gg
2

1
G

2
1

(60)

,20
TfU2g20 = ,20

TfU2g02 = 1111 2g fUT= (61)

( )[ ]
0

2

2

20
=ς

µς+
ς∂

∂
= cr;Real VXFf 0

,   ( )[ ]
0

2

11
=ς

µς+
ς∂ς∂

∂
= cr;Real VXFf 0 (62)

( )[ ]{ }
0

11
2

20
T

2

3

21 ww2G
=ς

µςς+ς+ς+
ς∂∂ς

∂
= cr;Real VXFU 0 (63)

and the vectors w11 and w20 are solutions of the following linear algebraic systems:

Jw h11 = − 11 , [ ]J I w h0 20 20− = −2iω , ( )[ ]h I l VU fij
T

ij= − 2 Re .a (64)

The most difficult part of the implementation of this algorithm is the calculation of the second (62)

and the third (63) derivatives of the right hand side of the ODE system.  The number of the ODEs

usually reaches several thousands and numerical differentiation can lead to unacceptably large

errors. However, the explicit form of (55) allows analytical calculation of (62) and (63). In the case

of parabolic non-linearity this yields:

( ) ( ) 




 −+−= )r(
j

)i(
i

)i(
j

)r(
ikij

)i(
j

)i(
i

)r(
j

)r(
ikijk, VVVViNVVVVN

2
1

f20 (65)

( ))i(
j

)i(
i

)r(
j

)r(
ikijk, VVVVN +=

2
1

f11 (66)

( ) [ ]mj,mj,imjijmi VwVwNNUG 201121 2
2
1

++= (67)

The use of (65)-(67) allows one to compute the asymptotic expansions (57) without significant loss

of accuracy. The CPU-time requirements for such calculations are comparable with the calculation

of a single steady state solution. Note, that the sign of µ1 defines whether the bifurcation is sub- or

super-critical.
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3    EXAMPLES OF APPLICATIONS

As was stated above, the main goal of the described approach is to reduce the number of degrees

of freedom of the numerical model. Several benchmark problems were solved to validate the

approach and to study the convergence.  Furthermore, we made detailed comparisons with the

results of our own finite volume solver. Details on various test calculations can be found in [2]-[8].

The accumulated experience shows that our approach really allows one to reduce the number of

degrees of freedom. We estimate that the accuracy of 100×100 to 200×200 finite volume grid can

be reached with the use of 30×30 to 40×40 basis functions of the global Galerkin method. Such a

significant reduction of the number of degrees of freedom allowed us to perform parametric studies

of linear stability of various fluid flows.

The main result of each stability study is diagrams showing the dependence of critical

parameters on other governing parameters of the problem. Two examples are shown in Figs.1 and 2.

Figure 1 corresponds to the onset of the oscillatory instability of convective flow in a laterally

heated square cavity (details can be found in [8]). It is seen that the neutral curve Grcr(Pr) is non-

monotonous and contains breaks and hysteresis loops. Clearly, such a complicated neutral curve

cannot be obtained by a straight-forward time-integration of the governing equations. The change of

the pattern of the convective flow along the neutral curve is illustrated as insets in Fig.1a. Each inset

in Fig.1a contains the streamlines (left frame) and the isotherms (right frame) at the critical point

shown. Breaks of the neutral curve Grcr(Pr) correspond to the change of the most dangerous

perturbation (described by the eigenvector of the linear stability problem) of the flow. Each break of

the neutral curve Grcr(Pr)  is followed by an abrupt change of the critical frequency (different

eigenvectors correspond to different eigenvalues whose imaginary part is the critical circular

frequency, see above). Patterns of the most dangerous perturbation are illustrated in the insets of

Fig.1b (left frames correspond to perturbation of the stream function, right frames – to perturbation

of the temperature). According to the linear stability theory the perturbations are defined to within

multiplication by a constant, and their isolines coincide with the isolines of the amplitude of

oscillations in the supercritical state (for details see [2] and [3]). Note, that the stability diagram,

shown in Fig.1, is drawn through several tens of calculated critical points. Sometimes it is necessary

to calculate several hundreds of critical points to complete the stability diagrams [4], [8]. Especially

difficult are cases where multiple stable steady states exist, and the stability of each branch of

steady state has to be studied separately [8]. It should be noted, that the knowledge of the existence
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of the multiplicity and possibility of path-following (both provided by the described approach)

allowed us to explain some experimental results which had no satisfactory theoretical explanation

before [7],[8].

The abrupt changes of the most dangerous perturbation were observed in all parametric studies

reported in [3]-[10]. Figure 2, corresponding to the oscillatory instability of a swirling flow in a

cylinder whose top and bottom corotate with the same angular velocity [5], provides an additional

example of such abrupt changes. Patterns of the flow are included as insets in Fig.2a (left frame –

isolines of the azimuthal velocity, right frames – streamlines of the meridional flow). Patterns of the

corresponding most dangerous perturbation are shown as insets in Fig.2b (left frame – perturbation

of the azimuthal velocity, right frames – perturbation of the meridional stream function). All the

insets show only the upper half of a cylinder, since the flow and the perturbation are symmetric with

respect to the midplane. The patterns of the flow are similar for all aspect ratios, and can be

characterized by two strong meridional vortices and a weak recirculation zone containing a double

vortex ring. Patterns of the perturbation, however, differ at different branches of the neutral curves.

On the other hand, different perturbation patterns have one common feature – a global maximum of

the azimuthal velocity perturbation is located in the middle of the recirculation zone. Therefore, it

can be assumed that in all cases the instability sets in inside the recirculation zone, but results in

different oscillatory flow patterns at different values of the aspect ratio.

An example of the asymptotic approximation of the oscillatory solution (57) is shown in Fig.3.

Supercritical oscillatory convective flow in a laterally heated cavity is considered [7]. Here the

asymptotic approximation of oscillatory convective flow, calculated with 30×30 basis functions, is

compared with the solution of the full unsteady problem on a 100×100 finite volume grid. It is seen

that results are very close, such that no heavy time-dependent calculations are needed to obtain the

correct pattern of oscillatory solution at not very large supercriticalities.

Another advantage of the global spectral approach is the analytical representation of the

approximate solution over the whole domain. This allows an easy analytical calculation of

derivatives and integrals of the solution, as was done in [2] for the calculation of the Nusselt

number, and in [3] for the calculation of vorticity. This advantage is illustrated also in the next

example (Fig.4), where the trajectories of tracers, immersed in a liquid for visualization of the flow,

are calculated using the velocity approximated by series (50) and therefore defined at each point of

the flow region. For the considered problem of the swirling flow in a cylinder with rotating lid [3]

the latter requires solution of the following ODE system:
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( )

( )

( )
b

z

cor

cent
r

fv
dt
dz

fv
dt
d

r

fv
dt
dr

+=

+=
ϕ

+=

ϕ (68)

where fcent, fcor and fb are the centrifugal, Coriolis and buoyancy forces respectively, which arise due

to a slight difference of  the liquid and tracer densities. Solution of (68) requires the calculation of

the velocity at an arbitrary point (r,ϕ,z) and is extremely sensitive to numerical errors. The

analytical approximation, provided by a global spectral method, allows one to calculate the velocity

as a summation of the corresponding series, without introducing an additional numerical error. The

trajectories shown in Fig.3 are calculated using the steady axisymmetric velocity field. The non-

axisymmetric pattern of the trajectories is caused by the already mentioned density difference (2%

difference is enough to cause this effect). Such non-axisymmetric trajectories, observed in

experiment, were mistakenly interpreted as the result of a non-axisymmetric flow [13].

4     CONCLUDING REMARKS

The proposed approach was used for the study of stability of swirling flows [3]-[5], buoyancy-

driven convection [6]-[8],[10], and axisymmetry-breaking bifurcations of convective flows [9].  In

all these problems fast convergence of the Galerkin method allowed us to complete the stability

analysis for wide ranges of the governing parameters. The stability diagrams obtained show regions

of stability and possible multiplicity of steady state solutions. A relatively small number of degrees

of freedom allowed us also to perform a weakly nonlinear analysis of slightly supercritical

oscillatory states and to obtain the asymptotic approximation of the oscillatory states without

solution of the full unsteady problem [3],[6],[7]. The approach was easily extended for the study of

axisymmetry-breaking three-dimensional instabilities [9] and to fully three-dimensional stability

problems [10].

The main restriction of the described approach is that the shape of the flow region should be a

canonical domain. Apparently, an extension to flow regions of more complicated shape should

include a transformation of the domain or combination of the described approach with the finite

element or spectral element formulation. It can cause some additional numerical difficulties

connected with the calculation of the inner products of the basis functions. The inner products of the
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polynomial basis functions in [2]-[10] were calculated analytically. In the case of more complicated

flow regions this will be hardly possible. On the other hand, recent results of [14] (where a similar

Galerkin approach was used) show that numerical evaluation of the inner products also can lead to

sufficiently good results.
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FIGURE CAPTIONS

Fig.1. Convection in a laterally heated square cavity. Dependence of the critical Grashof number (a)

and the critical circular frequency (b) on the Prandtl number. Insets: streamlines and

isotherms at critical points (a); isolines of perturbations of the stream function and the

temperature (b).

Fig.2. Swirling flow in a cylinder with corotating top and bottom. Dependence of the critical

Reynolds number (a) and the critical circular frequency (b) on the aspect ratio. Insets:

streamlines and isolines of the azimuthal velocity at critical points (a); isolines of

perturbations of the stream function and the azimuthal velocity (b).

Fig.3. Convection in a laterally heated square cavity. Instantaneous streamlines of a convective flow

plotted for equal time intervals covering the complete period. Pr = 0, Gr = 4.5×105 (for

details see [7]). Left frames – asymptotic approximation (57) using 30×30 basis functions,

right frames – time-dependent calculation using 100×100 finite volume grid.

Fig.4. Swirling flow in a cylinder with rotating lid. Trajectories of visualization tracers crossing the

plane ϕ = 0,π. Calculation is based on steady axisymmetric solution obtained with 30×30

basis functions.
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